3-3 Videos Guide

3-3a

Definition: (partial derivative)

$$\circ \quad \frac{\partial z}{\partial x} = f_x(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$$

$$\circ \quad \frac{\partial z}{\partial y} = f_y(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$$

Exercise:

• Find the first partial derivatives of the function. $z = x \sin(xy)$

3-3b

- Higher-order partial derivatives
 - $\circ \quad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 y}{\partial y \partial x} = f_{xy} \text{ denotes the partial derivative first with respect to } x \text{ and then with respect to } y$

Theorem (statement):

• The conclusion of Clairaut's Theorem is that second mixed partial derivatives are equal: $f_{xy} = f_{yx}$

Exercises:

• Verify that the conclusion of Clairaut's Theorem holds, that is, $u_{xy} = u_{yx}$. $u = e^{xy} \sin y$

3-3c

- Find the first partial derivatives of the function. $f(x, y, z) = xy^2 e^{-xz}$
- Use implicit differentiation to find $\partial x/\partial z$ and $\partial x/\partial y$. $x^2 - y^2 + z^2 - 2z = 4$

3-3d

• Determine the signs of the partial derivatives for the function f whose graph is shown. (a) $f_{xy}(1,2)$ (b) $f_{xy}(-1,2)$

