3-3 Videos Guide

3-3a

Definition: (partial derivative)

- $\frac{\partial z}{\partial x}=f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$
- $\frac{\partial z}{\partial y}=f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}$

Exercise:

- Find the first partial derivatives of the function.

$$
z=x \sin (x y)
$$

3-3b

- Higher-order partial derivatives
- $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} y}{\partial y \partial x}=f_{x y}$ denotes the partial derivative first with respect to x and then with respect to y

Theorem (statement):

- The conclusion of Clairaut's Theorem is that second mixed partial derivatives are equal:

$$
f_{x y}=f_{y x}
$$

Exercises:

- Verify that the conclusion of Clairaut's Theorem holds, that is, $u_{x y}=u_{y x}$. $u=e^{x y} \sin y$

3-3c

- Find the first partial derivatives of the function.
$f(x, y, z)=x y^{2} e^{-x z}$
- Use implicit differentiation to find $\partial x / \partial z$ and $\partial x / \partial y$.

$$
x^{2}-y^{2}+z^{2}-2 z=4
$$

3-3d

- Determine the signs of the partial derivatives for the function f whose graph is shown.
(a) $f_{x y}(1,2)$
(b) $f_{x y}(-1,2)$

